Water reuse in farming

Carme Bosch and Marta Terré Barcelona, 13th June 2016

Date / Author

To explore the potential use of reclaimed water for livestock production

REUSE APPLICATION

REGULATORY REQUERIMENTS

Spanish standards for water reuse in agriculture (Royal Decree 1620/2007):

	APPLICATIONS		E.Coli (CFU/100ml)	Nematodes (eggs/10L)	Legionella spp (CFU/L)	SS (mg/L)	Turbidity (NTU)	Treatment train
	2.1	 Irrigation of fresh products for human consumption allowing direct contact of regenerated water with edible parts. 	<100	<1	<1000	20	10	Chemical precipitation, depth filtration and disinfection (ultraviolet radiation together with chlorination); residual chlorine may be needed in distribution system
	2.2	 Irrigation of not fresh products for human consumption not avoiding direct contact of regenerated water with edible parts (with industrial post- treatment). Irrigation of pastureland for milk or meat producing animals. Aquaculture 	<1000	<1	No limit set	35	No limit set	Filtration and disinfection (tendency to use ultraviolet radiation
	2.3	 Localized irrigation of ligneous crops impeding contact of regenerated water with food for human consumption. Irrigation of ornamental flowers and greenhouses with no direct contact of regenerated water 	<10000	<1	<100	35	No limit set	followed by residual chlorine)
			No st	andards	s for liv	estoc	k drink	king in Spain
S		with crops						

REGULATORY REQUERIMENTS

Minimum Reclaimed WATER CLASS for livestock production in Australia:

Type of water usage	Class of water (with			
	helmi	inth treat	ment)	
	Class A	Class B	Class C	
Livestock drinking water	\checkmark	\checkmark	X	
Dairy shed wash-down	\checkmark	\checkmark^1	X	
\checkmark use is recommended (subject to comments, if any, below)				
X not to be used for this purpose				
¹ but not for milking machinery				

Class	Treatment processes	Water quality objectives
В	Secondary treatment + Pathogen disinfection Suggested best practice: UV, chlorination or ozonation (and helminth reduction)	Bacteriological criteria: · <100 <i>E.coli</i> org/100 ml Helminth and other pathogens: Helminth reduction for cattle grazing Others: · pH 6 – 9 · < 20 mg/L BOD · < 30 mg/L SS

GOOD QUALITY WATER (taste, smell, turbidity, electrical conductivity and presence of certain substances)

ACCEPTABILITY AND EFFECTS ON ANIMAL PERFORMANCE

Element	Upper level (mg/l)	Maximum upper level (mg/l)
Total disolved solids (TDS)	960	5000
Sulphate	150	900
Nitrate-N	20	100
Fe	0,2	0,4
Mn	0,05	0,5

Socha et al., 2003. Variability of Water Composition and Potential Impact on Animal Performance

Use of reclaimed water from Caldes de Montbui WWTP for livestock drinking

FEED WASTEWATER CHARACTERISTICS

Secondary effluent WWTP Caldes Montbui	Water quality objectives for Class B (Australian Guidelines for Water Reuse)	Water quality guidelines for livestock drinking (Socha et al., 2003)
 • pH 7.45 ✓ • 15.5 mg/L BOD ✓ • 14.3 mg/L SS ✓ • ~ 9 NTU ✓ • 61,000 ufc/100 mL <i>E. coli</i> X • NO3-N ~ 4 mg/l ✓ • SO4 ~ 60 mg/l ✓ • Mn ~ 0.003 mg/l ✓ 	Bacteriological criteria: · <100 <i>E.coli</i> org/100 ml Helminth and other pathogens: Helminth reduction for cattle grazing Others: · pH 6 – 9 · < 20 mg/L BOD · < 30 mg/L SS	TDS < 960-5000 mg/l NO3-N < 20-100 mg/l SO4 < 150-900 mg/l Fe < 0.2 mg/l Mn < 0,05 mg/l

ULTRAFILTRATION PERFORMANCE

• **Rationale of the treatment:** elimination of suspended solids, colloids, bacteria, protozoa and some viruses from water, also helminth eggs and spores

Membrane and UF module specifications:

Module Type:	MO P13U(1m)_I8	
Module Material:	PVC-U, resin	
Membrane Type:	66.03 18	
Membrane Material:	PVDF	
Molecular Weight Cut-off:	30	nm
Membrane area:	0.32	m²
Nº Channels	13	channels
Inner tubes diameter	8	mm
Membrane length	100	cm
pH tolerance	2-10	
Maximum pressure	6	bar
Maximum temperature	40	°C
Filtration area	0.3267	m²
Filtration transversal area	6.53	cm ²

UF performance with the secondary WWTP effluent from Caldes:

Average permeate flowrate	32.4	L/h
Membrane flux (LMH)	99	LMH (L/m² · h)
Cross Flow Velocity (CFV)	0.69	m/s
Qf, feedwater flowrate	1612	L/h
Qc, concentrate flowrate (Crossflow)	1579	L/h

SEVENTH FRAMEWORK PROGRAMME

UV DISINFECTION PERFORMANCE

 Rationale of the treatment: elimination microbial contamination including bacteria, viruses and protozoa

Recommended UV doses for reclaimed water systems (Source: *Water Reuse: Issues, Technologies, and Applications*):

- 100 mJ/cm² for granular medium filtration effluent
- 80 mJ/cm² for membrane filtration effluent
- 50 mJ/cm² for reverse osmosis effluent

The dosage selected is intended to provide 4 log of poliovirus inactivation with a factor of safety of about 2.

	Studies (n)	UV fluence (mJ/cm ²)	UV	k ^a (±95%CI; r ²)	MIC _{max} (log
Poliovirus type 1	6 (61) ^{b,c,d,e,f,g}	5-50	MC	0.135 (0.007; 0.79)	5.4
Adenovirus ST2,15, 40, 41	5 (98) ^{g,h,i,j,k}	8-306	MC	0.024 (0.001; 0.87)	6.4
Adenovirus ST40	1 (29) ⁱ	8-184	MC	0.018 (0.004; 0.88)	3.0
Adenovirus ST2, 41	$1(18)^{k}$	30-90	PC	0.040 (0.003; 0.77)	4.3
Rotavirus SA-11	5 (55) ^{b,d,e,k,1}	5-50	MC	0.102 (0.006; 0.78)	4.1
Rotavirus SA-11	1 (11) ^k	5-30	PC	0.154 (0.011; 0.92)	4.6
Calicivirus feline, canine	3 (29) ^{i,m,n}	4-49	MC	0.106 (0.010; 0.67)	5.5
Calicivirus bovine	$1(20)^{k}$	4-33	MC	0.190 (0.008; 0.96)	5.7
Calicivirus bovine	1 (20) ^k	2-15	PC	0.293 (0.010; 0.97)	5.9
Hepatitis A	3 (13) ^{e,l,o}	5-28	MC	0.181 (0.028; 0.70)	5.4
Coxsackie virus B5	2 (12) ^{h,1}	5-40	MC	0.119 (0.006; 0.97)	4.8

•••

UV DISINFECTION PERFORMANCE

Table 3 – UV sensitivity of bacteria and bacterial spores for monochromatic (MC) and polychromatic (PC) UV radiation determined with collimated beam tests

	Studies (data)	Fluence (mJ/cm ²)	UV	k (±95%CI; r ²)	Offset ^a (mJ/cm ²)	MIC _{max} (log)
Salmonella typhi	2 (26) ^{b,c}	2-10	MC	0.515 (0.047; 0.83)	0	5.6
Campylobacter jejuni	2 (27) ^{c,d}	0.56	MC	0.880 (0.124; 0.65)	0	5.3
Yersinia enterocolitica	2 (34) ^{c,d}	0.6–5	MC	0.889 (0.060; 0.87)	0	5.0
Shiqella dysenteriae	1 (9) ^c	1-5	MC	1.308 (0.087; 0.95)	0	5.9
Shigella sonnei	1 (9) ^b	3–8	MC	0.468 (0.053; 0.89)	0	4.7
Vibrio cholerae	1 (10) ^c	0.6-4	MC	1.341 (0.113; 0.94)	0	5.8
Legionella pneumophila	1 (15) ^c	1-12	MC	0.400 (0.040; 0.92)	0	4.4
Legionella pneumophila	$1(4)^{e}$	0.5-3	MC	1.079 (0.077; 0.99)	0	3.0
Escherichia coli O157	2 (16) ^{c,f}	1-7	MC	0.642 (0.082; 0.85)	0	5.5
Escherichia coli	6 (41) ^{b,d,g,h,ij}	1-15	MC	0.506 (0.049; 0.71)	0	6.0
Escherichia coli	1 (23) ^k	1.5-9	PC	0.539 (0.070; 0.64)	0	5.2
Streptococcus faecalis	2 (19) ^{b,g}	2.5-16	MC	0.312 (0.032; 0.85)	0	4.6
Bacillus subtilis	4 (30) ^{b,h,l,m}	5-78	MC	0.059 (0.007; 0.91)	12.3	4.0
Clostridium perfringens	1 (9) ^m	48-64	PC	0.060 (0.027; 0.81)	18	3.0

Table 4 – UV sensitivity of protozoa and Acanthamoeba spp. for monochromatic (MC) and polychromatic (PC) UV radiation determined with collimated beam tests

	Studies (data)	k (±95% CI; r ²)	Range (mJ/cm²)	Intercept (95%)	MIC _{max}
C. parvum	6 (38) ^{a,b,c,d,e,f}	0.243 (0.08; 0.49)	0.5-6.1; PC	1.502 (0.538)	3.0
C. parvum	4 (65) ^{a,c,f,g}	0.225 (0.07; 0.37)	0.9-13.1; MC	1.087 (0.403)	3.0
Giardia muris	1 (4) ^h	0.122 (0.178; 0.81)	1.5-11; MC	1.303 (1.280)	2.4
Giardia lamblia	1 (2) ⁱ	nd	0.05-1.5; MC	nd	2.5
Acanthamoeba spp.	1 (16) ^j	0.021 (0.004; 0.94)	43–172; MC	0.499 (0.449)	4.5

UV DISINFECTION PERFORMANCE

UV module Mini-1000 SS304 STERILUX performance

DEMONSTRATION STUDY: TORRE MARIMON SITE

HYPOTHESIS: water quality standards proposed by the Australian legislation will be achieved under the proposed treatment scheme and the use of reclaimed water for drinking purposes will not affect animal safety and performance. **OBJECTIVE:** to evaluate short-term effects on performance, health, and metabolism of offering reclaimed water to dairy calves from 7 to 70 d of age.

MATERIALS and METHODS: in vivo

- ✓ 20 Holstein calves of 7 d of age and 40 kg body weight
- Feeding program: 6 L/d of milk replacer diluted at 12.5% DM, and concentrate and forage ad libitum from the beginning of the study to 56 d of age. After that, calves will be weaned and fed with concentrate and forage until 70 d of age.
- ✓ 2 treatments:
 - ✓ T0: water for milk replacer + drinking from the public net
 - ✓ T1: water for milk replacer + drinking from the reclamation treatment (UF+UV)

Hazard identification and reference indicators in reclaimed water:

Hazard	Indicator
Protozoa	Giardia spp. and Cryptosporidium
Bacteria	E. Coli Clostridium perfringens
Viruses	Viruses (bovine polyomaviruses as indicator of bovine faecal contamination and human adenoviruses as indicator of the disinfection performance)
Helminth	<i>Taenia</i> spp. Eggs

MONITORING PROGRAM TO ASSESS WATER QUALITY

MONITORING PROGRAM TO ASSESS ANIMAL HEALTH AND PERFORMANCE

Parameter	Frequency
Body weight	Weekly
Milk, concentrate, forage and wáter intake	Daily
Veterinary treatments	Record
Faecal consistency	Daily
Biochemical and haematological parameters in blood: glucose, urea, creatinine, hepatic enzymes, NEFA, triglycerides, T3, and hemogram	3 times
Helminthic eggs in faeces	2 times

PRELIMINARY RESULTS ON RECLAIMED WATER QUALITY

SEVENTH FRAMEWORK

Parameter	Unit	Average ± stdev (n=2)	Water quality objective
E. coli	ufc/100 ml	absence	<100
Helminth eggs	egg/10L	<1	<1
Suspended solids	mg/l	1.8±0.4	<30
Turbidity	NTU	3.6±3.4	-
рН		8.4±0.1	6-9
Conductivity	mS/cm	1.4±0.0	-
Total dissolved solids	mg/l	865	960
Total Organic Carbon	mg/l	4.9±1.4	<20 mgO ₂ /ml BOD
Chloride	mg/l	253±14	100
Sulphate	mg/l	61±6	150
Nitrate	mg/l	19±2.1	20
Phosphate	mg/l	5.4±0.1	-
Са	mg/l	70±1.0	100
Mg	mg/l	19±0.1	50
Na	mg/l	185±1.4	50
К	mg/l	20±0	20

F

- Assessment of reclaimed water for cleaning purposes
- Study on water preferences by the animals

CONCLUSIONS

- 1) The most demanding water use in farming is livestock drinking
- The proposed strategy for reclamation allows generating water of good quality to ensure livestock health and performance
- 3) Intermediate tanks should be removed to avoid microbial regrowth
- 4) There is a need for more research on water quality requirements for livestock drinking purposes and its impact on performance and on their agrofood products
- 5) An economic evaluation of the feasibility of the implementation of this system in a dairy farm is needed
- 6) More research about emergent contaminants such as endocrine disruptors, pharmaceuticals, etc. and their potential to bioaccumulate in the animal tissues

Thank you for your attention carme.bosch@ctm.com.es marta.terre@irta.cat

